PTFE FIBER

WHY PTFE FIBER?

Key Features
- Excellent chemical resistance
- Excellent flame resistance
- Excellent UV resistance
- Excellent temperature resistance
- Excellent abrasion resistance

Disadvantages
- Low tensile strength
- High elongation
- Low tensile modulus

FIBER-LINE® PROCESS FOR PTFE FIBER
- Coating
- Twisting
- Precision Winding

FIBER-LINE® PTFE FIBER PRODUCTS
- Packing Yarns
- High-Performance Rope
- Industrial Fabric Yarn

Molecular Structure

\[
\begin{align*}
F & \quad F \\
C & \quad C \\
F & \quad F
\end{align*}
\]

Chemical Name
Polytetrafluoroethylene.

Manufacturer
Gore, Lenzing, Toray, Other various suppliers.

History
PTFE is a synthetic fluoropolymer that was accidentally discovered by Roy Plunkett of DuPont in 1938. In 1941, the polymer was trademarked under the name Teflon™. Fibers have been produced from the PTFE polymer since the 1950’s.

Composition
PTFE fibers are typically produced using two different methods. The first method is matrix-spun, in which the fiber produced is round and brown in color. The second method, referred to as paste-extrusion, produces a flat white finished product. Typically, fibers produced using paste-extrusion have higher tenacity.

Common Deniers
Various sizes available.
PTFE FIBER

<table>
<thead>
<tr>
<th>Property</th>
<th>UOM</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breaking Tenacity</td>
<td>g/d</td>
<td>1.5 - 2.0</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>Ratio</td>
<td>2.10</td>
</tr>
<tr>
<td>Elongation @ Break</td>
<td>%</td>
<td>30.0</td>
</tr>
<tr>
<td>Tensile Modulus</td>
<td>g/d</td>
<td>5.0 - 15.0</td>
</tr>
<tr>
<td>Moisture Regain*</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>Creep**</td>
<td>%</td>
<td>N/A</td>
</tr>
<tr>
<td>Shrinkage***</td>
<td>%</td>
<td>< 11.0</td>
</tr>
<tr>
<td>Melt Point</td>
<td>°C</td>
<td>327</td>
</tr>
<tr>
<td>Decomposition Temp.</td>
<td>°C</td>
<td>508</td>
</tr>
</tbody>
</table>

* Equilibrium moisture regain @ 55% RH ** Creep @ 40%-58% ultimate tensile strength *** Shrinkage in dry air @ 177 °C for 30 minutes

This data is provided for informational purposes only, and does not constitute a specification. FIBER-LINE® makes no warranty, express or implied, that the product conforms to these values. Contact your FIBER-LINE® representative for exact product details which conform to your specific requirements.
ABOUT FIBER-LINE®

For over 25 years, FIBER-LINE® has provided science-driven expertise that improves the performance and the end-use processing of high performance fibers. Our products enable the search for new energy reserves and extend the life of fiber optic telecommunication cables. They also add important characteristics, such as SWELLCOAT® water-blocking, water repellence, adhesion, color, and wear and UV-resistance to these and many other applications. We believe that our ongoing commitment to protect the environment, to remain at the forefront of fiber and coating technology, and to ‘treat others as we want to be treated’ will continue to drive the success of our customers, shareholders, and employees.

LOCATIONS

Headquarters, R&D, Manufacturing
FIBER-LINE® LLC
3050 Campus Drive
Hatfield, PA 19440
+1 215.997.9181
fiber@fiber-line.com

Manufacturing Operations
FIBER-LINE® LLC
280 Performance Drive SE
Hickory, NC 28602
+1 828.326.8700
fiber@fiber-line.com

EMEA & Asia Pacific Operations
FIBER-LINE® INTERNATIONAL B.V.
Uranusweg 3
8938 AJ Leeuwarden
The Netherlands
+31(0) 58 216 75 99
info@fiber-line.com

NOTICE: The information and data contained herein do not constitute sales specifications. The product properties may be changed without notice. No liability, warranty or guarantee of product performance is created by this document. It is the Buyer’s responsibility to determine if this product is appropriate for the Buyer’s use and to ensure that the Buyer’s workplace and disposal practices are in compliance with applicable laws and regulations. No freedom from any patents or other industrial or intellectual property rights is granted or to be inferred.